Skills Worksheet

Math Skills

Wave Speed

After you study each sample problem and solution, work out the practice problems on a separate sheet of paper. Write your answers in the spaces provided.

The musical note A above middle C has a frequency of 440 Hz. If the speed of sound is known to be 350 m/s, what is the wavelength of this note?

SOLUTION

Step 1: List the given and unknown values.

Given: frequency, f= 440 Hz

wave speed, v = 350 m/s

Unknown: wavelength, $\lambda = ?$ m

Step 2: Write the equation for wave speed, and rearrange it to solve for wavelength.

$$v = f \times \lambda$$
 $\lambda = \frac{v}{f}$

Step 3: Insert the known values into the equation, and solve.

$$\lambda = \frac{350 \text{ m/s}}{440 \text{ Hz}}$$
$$\lambda = 0.80 \text{ m}$$

PRACTICE

V=fl f-9.05×10" Hz

1. A certain FM radio station broadcasts electromagnetic waves at a frequency of 9.05×107 Hz. These radio waves travel at a speed of 3.00×108 m/s. What is the wavelength of these radio waves travel at a $3.00 \times 10^{8} \text{ m/s} - 7.63.31 \text{ m}$ $9.05 \times 10^{9} \text{ Hz}$

v= 3.00 x 10 1 m/s

2. A dog whistle is designed to produce a sound with a frequency beyond that which can be heard by humans (between 20,000 Hz and 27,000 Hz). If a particular whistle produces a sound with a frequency of 2.5 × 104 Hz, what is the sound's wavelength? Assume the speed of sound in air is 331 m/s.

Holt Science Spectrum